Primitive Lucas d-pseudoprimes and Carmichael–Lucas numbers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Distribution of Lucas and Elliptic Pseudoprimes

Let ¿?(x) denote the counting function for Lucas pseudoprimes, and 2?(x) denote the elliptic pseudoprime counting function. We prove that, for large x , 5?(x) < xL(x)~l/2 and W(x) < xL(x)~l/3 , where L(x) = exp(logxlogloglogx/log logx).

متن کامل

Carmichael numbers and pseudoprimes

We now establish a pleasantly simple description of Carmichael numbers, due to Korselt. First, we need the following notion. Let a and p be coprime (usually, p will be prime, but this is not essential). The order of a modulo p, denoted by ordp(a), is the smallest positive integer m such that a ≡ 1 mod p. Recall [NT4.5]: If ordp(a) = m and r is any integer such that a ≡ 1 mod p, then r is a mult...

متن کامل

Existence of Primitive Divisors of Lucas and Lehmer Numbers

We prove that for n > 30, every n-th Lucas and Lehmer number has a primitive divisor. This allows us to list all Lucas and Lehmer numbers without a primitive divisor. Whether the mathematicians like it or not, the computer is here to stay. Folklore Whether the computer likes it or not, mathematics is here to stay. Beno Eckmann 32], p. xxiii Contents 1 Introduction 1 2 Cyclotomic criterion and n...

متن کامل

The Rabin-Monier theorem for Lucas pseudoprimes

We give bounds on the number of pairs (P,Q) with 0 ≤ P,Q < n such that a composite number n is a strong Lucas pseudoprime with respect to the parameters (P,Q).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 2007

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm108-1-7